next up previous
Next: $BLdBj(B Up: $B$N=i4|CMLdBj$N(B Green $B4X?t(B Previous: 2.3 $B2r$N8x<0(B


3 $B>v$_9~$_$rMxMQ$7$?>ZL@(B

($B$3$l$O8E$$%F%-%9%H$K:\$;$F$$$?$b$N$G$"$k!#(B)

$B0lHL$N(B $ f(x)$ $B$KBP$7$F!"HsF1

(7) $\displaystyle y''+p y'+q y=f(x)$

$B$NFC2r$r5a$a$k$K$O!"(B (1) Laplace $BJQ49$rMxMQ$9$kJ}K!(B, (2) $BDj?tJQ2=K!$J$I?'!9$JJ}K!$,$"$k$,!"(B $B$3$3$G$O=i4|CMLdBj$N(B Green $B4X?t(B$B$rMQ$$$kJ}K!$r>R2p$9$k!#(B


\begin{jtheorem}
% latex2html id marker 247
[Green $B4X?t$K$h$kFC2r(B]
$2$ $B<!J}Dx<.(B..
...u$ $B$O(B
(\ref{eq:$BDj?t78?t(B2$B3,HsF1<!@~7?(BODE$B$^$?$^$?(B}) $B$NFC2r$G$

$B$3$NDjM}$K8=$l$?4X?t(B $ G$ $B$N$3$H$r(B $BHyJ,J}Dx<0(B (7) $B$N(B $B=i4|CMLdBj$N(B Green $B4X?t(B$B$H$h$V!#(B


\begin{jexample}
$y''-5y'+6y=e^{2x}$ $B$NFC2r$r5a$a$F$_$h$&!#(B
$BFC@-:,$O(B $2$, $3$\...
...$B$3$H$KCm0U$9$k$H!


\begin{jdefinition}
$B6h4V(B $[0,\infty)$ $B$GDj5A$5$l$?O


\begin{jexample}
% latex2html id marker 305$B4X?t(B $e_n(x)$ ($n=1,2,\cdots$) $B$r(B...
...f{eq:en}) $B$OG$0U$N<+A3?t(B $n$ $B$K$D$$$F(B
$B@.$jN)$D$3$H$,J,$+$k!#(B\qed
\end{jexample}

$B>v$_9~$_$rMQ$$$k$H!"(B $B>e$N(B (9) $B$N(B $ u$ $B$O(B $ u=G\ast f$ $B$H=q$1$k$3$H$,J,$+$k!#(B $B>v$_9~$_$O>e$NDjM}$N>ZL@$K$b3hLv$9$k!#(B $B$=$N$?$a$K>/$7=`Hw$7$h$&!#(B


\begin{jproposition}[$B>v$_9~$_$N@-<A(B]
\begin{enumerate}[(1)]
\item $(c_1 f_1+c_2...
...iv 0$ $B$J$i$P(B $f\equiv 0$ $B$^$?$O(B $g\equiv 0$.
\end{enumerate}\end{jproposition}
(1) $B$O4JC1$G$"$k$N$G>JN,$9$k!#(B (2), (3) $B$O1i=,LdBj$H$9$k!#(B (4) $B$O0J2<$N5DO@$KI,MW$,$J$$$N$G>JN,$9$k(B3$B!#(B $ \qedsymbol$

$BDjM}$N>ZL@$KF~$kA0$K!"(B $BDj?t78?t(B$ 1$$B3,@~7?HyJ,J}Dx<0$N=i4|CMLdBj(B

$\displaystyle y'-a y=f(x),\quad y(0)=0
$

$B$N2r$O(B

$\displaystyle y=\int_0^x e^{a(x-y)}f(y) \D y
$

$B$G$"$k$3$H$r;W$$=P$7$F$*$/!#>v$_9~$_$rMQ$$$k$H(B

$\displaystyle y=(e^{a x}\ast f)(x)
$

$B$H$b=q$1$k!#(B

$BDjM}(B $ A(x):=e^{\alpha x}$, $ B(x):=e^{\beta x}$ $B$H$*$/!#(B $ u$ $B$,(B

$\displaystyle u''+p u'+q u=f(x),\quad u(0)=u'(0)=0
$

$B$rK~$?$9$H$9$k$H$-!"(B $ v:=u'-\beta u$ $B$H$*$/$H!"(B

$\displaystyle v'-\alpha v=(v''-\beta v')-\alpha(v'-\beta)
=v''-(\alpha+\beta) v'+\alpha\beta v
=v''+p v'+q v=f(x),
$

$\displaystyle v(0)=u'(0)-\beta u(0)=0-\beta\cdot 0=0
$

$B$G$"$k$+$i!">e$K=q$$$?Cm0U$h$j(B

$\displaystyle v(x)=(A\ast f)(x).
$

$B$H$3$m$G(B

$\displaystyle u'-\beta u=v(x),\quad u(0)=0
$

$B$G$"$k$+$i!"(B$ u=B\ast v$. $B$f$($K(B

$\displaystyle u=B\ast v=B\ast(A\ast f)=(B\ast A)\ast f.
$

$B$f$($K(B $ G:=B\ast A$ $B$H$*$/$H!"(B$ u=G\ast f$ $B$H$J$k!#(B $B0J2<(B $ G$ $B$r6qBNE*$K7W;;$7$F5a$a$h$&!#(B

$ \alpha\ne \beta$ $B$N>l9g$O(B

    $\displaystyle G(x)$ $\displaystyle = \int_0^x B(x-y)A(y) \D y =\int_0^x e^{\beta(x-y)}e^{\alpha y} \D y =e^{\beta x}\int_0^x e^{(\alpha-\beta) y} \D y$
      $\displaystyle =e^{\beta x} \left[\frac{e^{(\alpha-\beta) y}}{\alpha-\beta}\right]_0^x = \dfrac{e^{\alpha x}-e^{\beta x}}{\alpha-\beta}.$

$B0lJ}!"(B $ \alpha=\beta$ $B$N>l9g$O!"(B

    $\displaystyle G(x)$ $\displaystyle = \int_0^x B(x-y)A(y) \D y =\int_0^x e^{\alpha(x-y)}e^{\alpha y} \D y =e^{\alpha x}\int_0^x \D y =x e^{\alpha x}. \qed$

ARRAY(0xfd7e1c)



next up previous
Next: $BLdBj(B Up: $B$N=i4|CMLdBj$N(B Green $B4X?t(B Previous: 2.3 $B2r$N8x<0(B
Masashi Katsurada
$BJ?@.(B20$BG/(B3$B7n(B23$BF|(B