C..2.0.5 5

(1)

$\displaystyle P(X=k)={}_n C_k p^k(1-p)^{n-k}
={}_{400}C_k \left(\frac{1}{5}\ri...
...5}\right)^{400-k}
=\frac{400!}{\;k!(400-k)!\;}\cdot\frac{4^{400-k}}{5^{400}}.
$

(2)

$\displaystyle \Dfrac{P(X=k)}{P(X=k-1)}=\frac{{}_nC_k}{{}_nC_{k-1}}\frac{p}{1-p}...
...ac{k!(n-k)!}{\;(k-1)!(n-k+1)!\;}\cdot\frac{p}{1-p}
=\frac{k p}{(n-k+1)(1-p)}.
$

(3) 標準正規分布表
(4) 平均は $ E(X)=400\cdot\Dfrac{1}{5}=80$. 分散は $ V(X)=400\cdot\Dfrac{1}{5}\cdot
\Dfrac{4}{5}=\Dfrac{20^2\cdot 2^2}{5^2}$. 標準偏差 $ \sigma(X)=\sqrt{V(X)}=\Dfrac{20\cdot 2}{5}=8$. 標準正規分布に従う確率変数を $ Z$ とすると、
  $\displaystyle P(70\le X\le 90)$ $\displaystyle \kinji$ $\displaystyle P\left(\frac{70-0.5-80}{8}\le Z\le \frac{90+0.5-80}{8}\right)$
    $\displaystyle =$ $\displaystyle P(-1.3125\le Z\le 1.3125)$
    $\displaystyle =$ $\displaystyle \phi(1.3125)-\phi(-1.3125)$
    $\displaystyle =$ $\displaystyle 2\phi(1.3125)\kinji 2\times 0.405325\kinji 0.81.$



桂田 祐史