C..2.0.4 4

(1)

$\displaystyle 1=\int_{-\infty}^\infty f(x) \Dx=\int_0^1 ax(1-x)\Dx
=a\int_0^1x(1-x)\Dx=a\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{a}{6}.
$

ゆえに $ a=6$.
(2)

   平均$\displaystyle =\int_{-\infty}^\infty xf(x) \Dx
=\int_0^1x\cdot 6x(1-x)\Dx
=6\int_0^1(x^2-x^3)\Dx
=6\cdot\left(\frac{1}{3}-\frac{1}{4}\right)
=\frac{1}{2},
$

$\displaystyle \int_{-\infty}^\infty x^2f(x) \Dx=\int_0^1x^2\cdot 6x(1-x)\Dx
= 6\int_0^1(x^3-x^4)\Dx=6\cdot\left(\frac{1}{4}-\frac{1}{5}\right)
=\frac{3}{10}
$

であるから

   分散$\displaystyle =\frac{3}{10}-\left(\frac{1}{2}\right)^2=\frac{1}{20}.
$



桂田 祐史