課題文は http://nalab.mind.meiji.ac.jp/~mk/syori2-2005/jouhousyori2-2005-10/node8.htmlにあります。
In[1]:= mysum[n_]:=Sum[1/2^k,{k,1,n}] In[2]:= mysum[3] 7 Out[2]= - 8 In[3]:= mysum[{3,5,10,50}] 7 31 1023 1125899906842623 Out[3]= {-, --, ----, ----------------} 8 32 1024 1125899906842624 In[4]:= N[%,60] Out[4]= {0.875000000000000000000000000000000000000000000000000000000000, > 0.968750000000000000000000000000000000000000000000000000000000, > 0.999023437500000000000000000000000000000000000000000000000000, > 0.99999999999999911182158029987476766109466552734375000000000} In[5]:= Sum[1/2^k,{k,1,{3,5,10,50}}] 7 31 1023 1125899906842623 Out[5]= {-, --, ----, ----------------} 8 32 1024 1125899906842624 In[6]:=つまり
root3[n_]:=(root3[n-1]+3/root3[n-1])/2;root3[1]=1 |
In[1]:= x[n_,a_]:=(x[n-1,a]+a/x[n-1,a])/2 In[2]:= x[1,a_]:=x[1,a]=1 In[3]:= Table[x[n,3],{n,10}] 7 97 18817 708158977 1002978273411373057 Out[3]= {1, 2, -, --, -----, ---------, -------------------, 4 56 10864 408855776 579069776145402304 2011930833870518011412817828051050497 > -------------------------------------, 1161588808526051807570761628582646656 80957313605578358908887795350602568324792950627495792571646543704878940\ > 17 > ------------------------------------------------------------------------- 46740726803049617901689623601446146504427186362767757416581133707283760\ > 64 > , 131081732524639257263029684778781519606823938779762272955953002674777\ > 8869156184675079781409244667134996539912093324716384719508044596983036\ > 48792577 / > 75680073558942998051938864505913119483609300954880808364006749884322706\ > 9878908253282990504235133535052004565728687501994425856460541545875032\ > 18176} In[4]:= N[%,60] Out[4]= {1.00000000000000000000000000000000000000000000000000000000000, > 2.00000000000000000000000000000000000000000000000000000000000, > 1.75000000000000000000000000000000000000000000000000000000000, > 1.73214285714285714285714285714285714285714285714285714285714, > 1.73205081001472754050073637702503681885125184094256259204713, > 1.73205080756887729525435394607217191423510670911984376613038, > 1.73205080756887729352744634150587236780369509078195667060132, > 1.73205080756887729352744634150587236694280525381038062805581, > 1.73205080756887729352744634150587236694280525381038062805581, > 1.73205080756887729352744634150587236694280525381038062805581} In[5]:= N[Sqrt[3],60] Out[5]= 1.73205080756887729352744634150587236694280525381038062805581 In[6]:= %4 * %4 Out[6]= {1.00000000000000000000000000000000000000000000000000000000000, > 4.00000000000000000000000000000000000000000000000000000000000, > 3.06250000000000000000000000000000000000000000000000000000000, > 3.00031887755102040816326530612244897959183673469387755102041, > 3.00000000847267379690743339529456165503718758201548235406396, > 3.00000000000000000598218342217178908328022472309684364547835, > 3.00000000000000000000000000000000000298220987470891480206901, > 3.00000000000000000000000000000000000000000000000000000000000, > 3.00000000000000000000000000000000000000000000000000000000000, > 3.00000000000000000000000000000000000000000000000000000000000} In[7]:= N[N[Table[x[n,3]-Sqrt[3],{n,10}],400]] -9 Out[7]= {-0.732051, 0.267949, 0.0179492, 0.0000920496, 2.44585 10 , -18 -37 -73 -146 > 1.72691 10 , 8.6089 10 , 2.13946 10 , 1.32135 10 , -293 > 5.04018 10 } In[8]:=これから、 誤差の常用対数に をかけたもの (大ざっぱにいって合っている桁数と考えて良い) がおおよそ倍々ゲームで増えていくことが分かる。
の場合にどうなるかは各自に任せる。