next up previous
Next: 1.4 $BN9TNs$N@5CM@-!"IiCM@-(B Up: 1 $B6KCMLdBj(B Previous: $B4v2?3XE*9M;!(B

1.3 $B6KCMLdBj$NDjM}(B

Taylor $B$NDjM}$r(B $ k=2$ $B$GMQ$$$k!#(B $ f$ $B$,(B $ C^2$ $B5i$J$i$P!"==J,>.$5$$(B $ \forall h\ne0$ $B$KBP$7$F!"(B

    $\displaystyle f(a+h)$ $\displaystyle =f(a)+\left(d^2 f\right)_a(h) +\frac{1}{2!}\left(d^2 f\right)_{a+\theta h}(h)$
      $\displaystyle =f(a)+f'(a) h +\sum_{i,j=1}^n\frac{\rd^2 f}{\rd x_i\rd x_j}(a+\theta h)h_ih_j.$

$ f'(a)=0$ $B$H$9$k$H!"(B$ f'(a)h=0$ $B$J$N$G(B

$\displaystyle f(a+h)=f(a)+\sum_{i,j=1}^n\frac{\rd^2 f}{\rd x_i\rd x_j}(a+\theta h)h_ih_j.
$

$ \left\Vert h\right\Vert$ $B$,>.$5$$$H$-!"(B $B1&JUBh(B2$B9`$O!VBgBN!W(B $ h$ $B$N(B$ 2$$Bl9g$,$"$k!#(B

$\displaystyle \left(\forall h: 0<\left\Vert h\right\Vert<\eps\right)\quad
\sum_{i,j=1}^n\frac{\rd^2 f}{\rd x_i\rd x_j}(a+\theta h)h_ih_j>0
\quad\Then$   $ f$ $B$O(B $ a$ $B$G6K>.(B$\displaystyle ,
$

$\displaystyle \left(\forall h: 0<\left\Vert h\right\Vert<\eps\right)\quad
\sum_{i,j=1}^n\frac{\rd^2 f}{\rd x_i\rd x_j}(a+\theta h)h_ih_j<0
\quad\Then$   $ f$ $B$O(B $ a$ $B$G6KBg(B$\displaystyle .
$


\begin{jdefinition}[Hesse$B9TNs(B]
$C^2$\ $B5i$N4X?t(B $f$\ $B$KBP$7$F!

Hesse $B9TNs$ON9TNs$G$"$k!#(B $B$3$l$r;H$&$H!">e$N<0$O(B

$\displaystyle f(a+h)=f(a)+f'(a)h+\frac{1}{2}\left(H(a+\theta h)h,h\right)
=f(a)+\frac{1}{2}\left(H(a+\theta h)h,h\right)
$

$B$H=q$1$k!#(B


\begin{jtheorem}
$\Omega$ $B$,(B $\R^n$ $B$N3+=89g!


\begin{jremark}
$B@5CM$G$bIiCM$G$bITDjId9f$G$b$J$$>l9g$,$l9g$O!"$b$C$H>\$7$/D4$Y$J$$$HH=Dj$G$-$J$$!#(B \qed \end{jremark}">


next up previous
Next: 1.4 $BN9TNs$N@5CM@-!"IiCM@-(B Up: 1 $B6KCMLdBj(B Previous: $B4v2?3XE*9M;!(B
Masashi Katsurada
$BJ?@.(B23$BG/(B7$B7n(B17$BF|(B