10.3.0.2 解答

  1. $\displaystyle 1=\int_{-\infty}^\infty f(x) \Dx
=\int_{0}^1 a x(1-x) \Dx=\frac{\;a\;}{6}.
$

    ゆえに $ a=6$.
  2. $\displaystyle E(x)=\int_{-\infty}^\infty x f(x) \Dx
=\int_{0}^1 6 x^2(1-x) \Dx
=6\left(\frac{1}{3}-\frac{1}{4}\right)
=6\cdot\frac{1}{12}=\frac{1}{\;2\;}.
$

    $\displaystyle E(X^2)=\int_{-\infty}^\infty x^2 f(x) \Dx
=\int_{0}^1 6 x^3(1-x) \Dx
=6\left(\frac{1}{4}-\frac{1}{5}\right)
=6\cdot\frac{1}{20}=\frac{3}{10}.
$

    $\displaystyle V(X)=E(X^2)-E(X)^2=\frac{3}{10}-\left(\frac{1}{2}\right)^2=
\frac{3}{10}-\frac{1}{4}=\frac{6-5}{20}=\frac{1}{20}. \quad\qed
$



桂田 祐史