/* * Newton.c * 非線形 2 点境界値問題 * -u''=u^2 in (0,1), u(0)=u(1)=0 * を差分法で離散化して得られる非線形方程式を Newton 法で解く。 */ #include <stdio.h> #include <math.h> #include <matrix.h> #include "fplot.h" #include "trid-lu.h" void mul_mv(int n, vector ab, vector al, vector ad, vector au, vector b) { int i, nm1 = n - 1; ab[0] = ad[0] * b[0] + au[0] * b[1]; for (i = 1; i < nm1; i++) ab[i] = al[i] * b[i-1] + ad[i] * b[i] + au[i] * b[i+1]; ab[nm1] = al[nm1] * b[nm1-1] + ad[nm1] * b[nm1]; } double norm(int n, vector x) { return sqrt(dotprod(n, x, x)); } int main() { int N, i, k; vector al,ad,au,akl,akd,aku; vector U, x; double h, h2, du, H; N = 100; h = 1.0 / N; h2 = h * h; al = new_vector(N+1); ad = new_vector(N+1); au = new_vector(N+1); akl = new_vector(N+1); akd = new_vector(N+1); aku = new_vector(N+1); U = new_vector(N+1); x = new_vector(N+1); /* 初期値 */ printf("H (10位でOK)="); scanf("%lg", &H); for (i = 0; i <= N; i++) U[i] = H; U[0] = U[N] = 0.0; /* A */ for (i = 1; i < N; i++) { al[i] = - 1.0 / h2; ad[i] = 2.0 / h2; au[i] = - 1.0 / h2; } openpl(); fspace2(-0.2, -2.0, 1.2, 20.0); fmove(0.3, 15.0); label("-u''=u^2 in (0,1), u(0)=u(1)=0"); linemod("dotted"); fline(-0.2, 0.0, 1.2, 0.0); fline(0.0, -2.0, 0.0, 20.0); linemod("solid"); for (k = 1; k < 100; k++) { /* A U^k の計算 */ mul_mv(N - 1, x+1, al+1, ad+1, au+1, U+1); /* F(U^k) の計算 */ for (i = 1; i < N; i++) x[i] -= U[i] * U[i]; /* F'(U^k) の計算 */ for (i = 1; i < N; i++) { akl[i] = al[i]; akd[i] = ad[i] - 2 * U[i]; aku[i] = au[i]; } /* F'(U^k)^{-1} U(U^k) の計算 */ trid(N-1, akl+1, akd+1, aku+1, x+1); /* */ du = norm(N-1, x+1); printf("du=%g\n", du); /* U^{k+1} の計算 */ for (i = 1; i < N; i++) U[i] -= x[i]; /* */ #ifdef NONE for (i = 0; i <= N; i++) printf("U[%d]=%g\n", i, U[i]); #endif fmove(0.0, U[0]); for (i = 1; i <= N; i++) fcont(i * h, U[i]); if (du < 1.0e-12) break; } { double min, max; max = U[0]; min = U[0]; for (i = 1; i <= N; i++) { if (U[i] > max) max = U[i]; else if (U[i] < min) min = U[i]; } printf("min=%g, max=%g\n", min, max); } mkplot("Newton.plot"); closepl(); return 0; }