Next:
5 レポート課題12予告
Up:
情報処理2 第11回 Mathematica体験 (2)
Previous:
3 Mathematica 体験 (前回の続き)
4 レポート課題11
Oh-o! Meiji を使ってレポートを提出せよ。 締め切りは7月19日(月曜)18:00とする (
変更しました
)。
と書いたのですが、 Oh-o! Meiji の容量制限にひっかかってしまうそうです。 Mathematica の新しいバージョンでは、見栄えを綺麗にしたために、 画像ファイルのサイズが大きくなったせいですね。 サイズを押えるために、JPEG (.jpg) で
Export[]
して、 jpeg2ps で PostScript (.eps) に変換するという手段がありますが、 試験前で忙しいでしょうから、メールで
syori2@math.meiji.ac.jp
に送ってもらっても構いません。 もう一つ、裏技的な解決手段として、Version 5 時代のグラフィックスを使う、 というのがあります。
In[数] := <<Version5`Graphics`
としてからグラフを描いて、
Export[ ]
すると、 出来上がるファイルのサイズはかなり小さくなります。
Mathematica に与えたコマンドと計算結果、その説明を T
E
X で書き、 PDFファイル (名前は
kadai11.pdf
とする) を提出する。
(繰り返し) 結果が複雑な場合は、簡単化を試みること。
(繰り返し) 検算が可能な問題については、検算もすること。 -- 時間に余裕が生じた場合は、ここを頑張ること。 コンピューターを使う場合、筆算ではできないような検算も可能になる。
(1)
Mathematica に、
(
) を計算させなさい。 (結果を見て納得が行きますか?)
(2)
,
,
,
を計算せよ (なるべくユーザー定義関数を使うこと)。 また、それらの値を正確に小数に直せ (十進法では有限小数というのはすぐ分かりますね?)。
(3)
与えられた
に対して、
の近似値を求めるために Newton 法
が利用できる
1
。 実際にこれを用いて
,
の近似値を求めよ。 やはり計算の仕方を工夫すること。 また得られた結果の精度についても検討せよ。
(4)
次のどちらか一方を解け。
(a)
図1を再現せよ。
(b)
円錐を描け。
図:
と 接平面
Next:
5 レポート課題12予告
Up:
情報処理2 第11回 Mathematica体験 (2)
Previous:
3 Mathematica 体験 (前回の続き)
Masashi Katsurada
平成22年7月17日