next up previous
Next: 2 $B1"4X?tDjM}(B Up: 1 $BLd(B11 Previous: 1 $BLd(B11

1.0.0.1 $B2r@b(B (2011/7/18)

(1) $ \nabla f(x,y)=\begin{pmatrix}4x^3+12x y^2-4x\\
4y^3+12x^2 y-4y\end{pmatrix}$      (2) $ \begin{pmatrix}12x^2+12y^2-4 & 24x y \ 24x y & 12x^2+12y^2-4
\end{pmatrix}$
(3) $ \nabla f(x,y)=0$ $B$H$J$kE@(B $ (x,y)$ $B$r5a$a$k!#(B

      $\displaystyle \nabla f(x,y)=0$
      $\displaystyle \LongIff \left\{ \begin{array}{l} 4x^3+12x y^2-4x=0\ 4y^3+12x^2 y-4y=0 \end{array} \right.$
      $\displaystyle \LongIff \left\{ \begin{array}{l} x(x^2+3y^2-1)=0\ y(y^2+3x^2-1)=0 \end{array} \right.$
      $\displaystyle \LongIff (x=0 $   or$\displaystyle  x^2+3y^2-1=0)$   and$\displaystyle \quad (y=0 $   or$\displaystyle  y^2+3x^2-1=0)$
      $\displaystyle \LongIff \left\{ \begin{array}{l} x=0 \ y=0 \end{array} \right.  $   or$\displaystyle  \left\{ \begin{array}{l} x=0 \ y^2+3x^2-1=0 \end{array} \right.  $   or$\displaystyle  \left\{ \begin{array}{l} x^2+3y^2-1=0 \ y=0 \end{array} \right.  $   or$\displaystyle  \left\{ \begin{array}{l} x^2+3y^2-1=0 \ y^2+3x^2-1=0 \end{array} \right.$
      $\displaystyle \LongIff \left\{ \begin{array}{l} x=0 \ y=0 \end{array} \right.  $   or$\displaystyle  \left\{ \begin{array}{l} x=0 \ y=\pm1 \end{array} \right.  $   or$\displaystyle  \left\{ \begin{array}{l} x=\pm1\ y=0 \end{array} \right.  $   or$\displaystyle  \left\{ \begin{array}{l} x^2=1-3y^2\ y^2=\dfrac{1}{4} \end{array} \right.$
      $\displaystyle \LongIff (x,y)=(0,0),(0,1),(0,-1),(1,0),(-1,0) ,\left(\dfrac{1}{2...
...ft(-\dfrac{1}{2},\dfrac{1}{2}\right) ,\left(-\dfrac{1}{2},-\dfrac{1}{2}\right).$

$ (x,y)=(0,0)$ $B$N$H$-!"(B $ H(0,0)=\begin{pmatrix}-4&0\ 0 & -4\end{pmatrix}$. $B$3$l$OBP3Q9TNs$@$+$i!"8GM-CM(B $ -4$ ($B=E:,(B) $B$G!"(B$ H(0,0)$ $B$OIiCM$G$"$k!#(B $B$f$($K(B $ f$ $B$O$3$NE@$G6KBg$H$J$k!#(B $B6KBgCM(B $ f(0,0)=0$.

$ (x,y)=(\pm 1,0),(0,\pm1)$ $B$N$H$-!"(B $ H(x,y)=\begin{pmatrix}8&0\ 0 & 8\end{pmatrix}$. $B$3$l$OBP3Q9TNs$@$+$i!"8GM-CM(B $ 8$ ($B=E:,(B) $B$G!"(B$ H(x,y)$ $B$O@5CM$G$"$k!#(B $B$f$($K(B $ f$ $B$O$3$l$i$NE@$G6K>.$H$J$k!#(B $B6K>.CM(B $ f(\pm1,0)=f(0,\pm1)=-1$.

$ (x,y)=\pm\left(\dfrac{1}{2},\dfrac{1}{2}\right)$ $B$N$H$-!"(B $ H(x,y)=\begin{pmatrix}2&6\ 6&2\end{pmatrix}$. $ \det H_1(x,y)=2>0$, $ \det H_2(x,y)=2^2-6^2=-32<0$ $B$G$"$k$+$i!"(B$ H(x,y)$ $B$OITDjId9f$G$"$k!#(B $B$f$($K(B $ f$ $B$O$3$l$i$NE@$G6KCM$r $ (x,y)=\pm\left(\dfrac{1}{2},-\dfrac{1}{2}\right)$ $B$N$H$-!"(B $ H(x,y)=\begin{pmatrix}2&-6\ -6&2\end{pmatrix}$. $ \det H_1(x,y)=2>0$, $ \det H_2(x,y)=2^2-6^2=-32<0$ $B$G$"$k$+$i!"(B$ H(x,y)$ $B$OITDjId9f$G$"$k!#(B $B$f$($K(B $ f$ $B$O$3$l$i$NE@$G6KCM$r $B$^$H$a$k$H!"(B$ (0,0)$ $B$G6KBgCM(B 0 $B$r $ (0,\pm1),(\pm1,0)$ $B$G6K>.CM(B $ -1$ $B$r


\begin{jremark}[$BOC5n$,=PMh$k!#(B \qed \end{jremark}">

ARRAY(0xf591b0)


next up previous
Next: 2 $B1"4X?tDjM}(B Up: 1 $BLd(B11 Previous: 1 $BLd(B11
Masashi Katsurada
$BJ?@.(B23$BG/(B7$B7n(B21$BF|(B