next up previous
Next: $B;29MJ88%(B

$BB?JQ?t$NHyJ,@QJ,3X(B1 $BBh(B3$B2s(B

$B7KED(B $BM4;K(B


Date: 2011$BG/(B5$B7n(B9$BF|(B

$B$3$Nhttp://www.math.meiji.ac.jp/~mk/lecture/tahensuu1-2011/

$BA02s$O!"B?JQ?t4X?t$N6K8B$NDj5A$r=R$Y$?!#(B
$BI|=,(B: $BB?JQ?t4X?t$N6K8B(B
$ \Omega\subset\R^n$, $ \vec f\colon\Omega\to\R^m$, $ \vec a\in
\overline{\Omega}$, $ \vec A\in\R^m$ $B$H$9$k$H$-!"(B

    $\displaystyle \lim_{\vec x\to\vec a}\vec f(\vec x)=\vec A$ $\displaystyle \DefIff \lim_{\vec x\to\vec a}\left\Vert\vec f(\vec x)-\vec A\right\Vert=0$
      $\displaystyle \Iff \forall\eps>0\quad\exists\delta>0\quad \left(\forall\vec x\i...
...a\right\Vert<\delta\right) \quad\left\Vert\vec f(\vec x)-\vec A\right\Vert<\eps$


\begin{jremark}[$B:Y$+$$Dj5A$N0c$$(B]
$BB?$/$NK\$G(B$\left(\forall\vec x\in\Omega: \tex...
...$BH$s$I:9$,$J$$!%*!


\begin{jdefinition}[$BB?JQ?t4X?t$NO


\begin{jexample}[$BDj?t4X?t$OO


\begin{jproposition}
$\Omega\subset\R^n$, $\vec a\in\overline\Omega$,
$\vec f\c...
...ec x)}{\varphi(x)}
=\frac{\vec A}{\lambda}.
\end{displaymath}\end{jproposition}

Proof. $ 1$$BJQ?t4X?t$N>l9g$N>ZL@$r$J$>$k!#(B

($BJL>ZL@$N6Z(B) $B@h$K2CK!(B $ (x,y)\mapsto\vec x+\vec y$$B!"%9%+%i!<>hK!(B $ (\lambda,\vec x)
\mapsto\lambda\vec x$, $BFb@Q(B $ (\vec x,\vec y)\mapsto \vec x\cdot\vec y$, $B%N%k%`(B $ \vec x\mapsto\left\Vert\vec x\right\Vert$ $B$NO"B3@-$r8@$C$F!"(B $B$=$l$+$i(B $ \vec x\mapsto\left(\vec f(\vec x),\vec g(\vec x)
\right)$, $ \vec x\mapsto\left(\varphi(\vec x),\vec f(\vec x)\right)$ $B$J$I$H$N(B $B9g@.4X?t$H9M$($k!#(B $ \qedsymbol$ ARRAY(0xf95d10) $ \qedsymbol$


\begin{jcorollary}
$BO


\begin{jproposition}[$B9g@.4X?t$N6K8B(B]
$U\subset\R^n$, $V\subset\R^m$, $\vec f\co...
...eft(\vec g\circ\vec f\right)(\vec x)=\vec c.
\end{displaymath}\end{jproposition}
($B:Y$+$$Cm(B: $ \dsp\lim_{\vec y\to\vec b}$ $B$,0UL#$r;}$D$?$a$K$O!"(B $ \vec b\in\overline V$ $B$G$"$kI,MW$,$"$k$,!"$=$l$O!"(B $ \vec f(U)\subset V$, $ \vec a\in\overline U$, $ \dsp
\lim_{\vec x\to\vec a}\vec f(\vec x)=\vec b$ $B$+$i=P$FMh$k!#(B)

Proof. $ \forall\eps>0$, $ \exists\delta'>0$ s.t.

$\displaystyle \left\Vert\vec y-\vec b\right\Vert<\delta'\quad\Then\quad
\left\Vert\vec g(\vec y)-\vec c\right\Vert<\eps.
$

$ \exists\delta>0$ s.t.

$\displaystyle \left\Vert\vec x-\vec a\right\Vert<\delta\quad\Then\quad
\left\Vert\vec f(\vec x)-\vec b\right\Vert<\delta'.
$

$B$3$N$H$-!"(B $ \vec y:=\vec f(\vec x)$ $B$H$9$k$3$H$G!"(B

$\displaystyle \left\Vert\vec x-\vec a\right\Vert<\delta\quad\Then\quad
\left\Vert\vec g\left(\vec f(\vec x)\right)-\vec c\right\Vert<\eps. \qed
$

$ \qedsymbol$


\begin{jcorollary}
$BO

$BO"B34X?t$,$?$/$5$s$"$k$3$H$r<($=$&!#(B


\begin{jlemma}[$B:BI84X?t$NO

Proof.

$\displaystyle \left\vert\varphi_i(\vec x)-\varphi_i(\vec a)\right\vert
=\left\vert x_i-a_i\right\vert\le\left\Vert\vec x-\vec a\right\Vert
$

$B$h$jL@$i$+$G$"$k!#0$ --> $ \forall\eps>0$ $B$KBP$7$F!"(B $ \delta:=\eps$ $B$H$*$/$H!"(B$ \delta>0$ $B$G!"(B $ \left\Vert\vec x-\vec a\right\Vert<\delta$ $B$J$i$P!"(B

$\displaystyle \left\vert\varphi_i(\vec x)-\varphi_i(\vec a)\right\vert
\le\left\Vert\vec x-\vec a\right\Vert<\delta=\eps. \qed
$

$ \qedsymbol$

$ n$ $BJQ?t(B $ x_1$, $ \dots$, $ x_n$ $B$N

$\displaystyle \sum_{i=0}^N\sum_{j=0}^N a_{ij}x^i y^j
$

$B$N7A$r$7$?<0$N$3$H$r8@$&(B ($ N\in\N$, $ a_{ij}\in\R$)$B!#(B $ x_1$, $ \dots$, $ x_n$ $B$N $ \R[x_1,
\dots,x_n]$ $B$HI=$9!#(B

$B$^$?(B2$B$D$N $ P(x_1,\dots,x_n)$, $ Q(x_1,\dots,x_n)$ $B$rMQ$$$F!"(B $ R(x_1,\dots,x_n)=\dfrac{Q(x)}{P(x)}$ $B$HI=$5$l$k(B $ R(x_1,\dots,x_n)$ $B$N$3$H$r(B $ n$ $BJQ?t(B $ x_1$, $ \dots$, $ x_n$ $B$N, $ \dots$, $ x_n$ $B$N $ R(x_1,\dots,x_n)$ $B$HI=$9!#(B

$B $B2f!9$OJ#AG?tCM4X?t$OEvLL9M$($J$$$N$G!"(B $BJ#AG78?tB?9`<0!"J#AG78?tM-M}<0$O07$&I,MW$,$J$$!#(B $BHQ;($5$rHr$1$k$?$a!"!VJ$-!"C1$K!VB?9`<0!W!"(B $B!VM-M}<0!W$H8F$V$3$H$K$9$k!#(B


\begin{jproposition}[$BB?9`<04X?t!

Proof. (1) $BB?9`<04X?t(B $ \vec x\mapsto P(x_1,\dots,x_n)\in\R$ $B$O!"(B $ \varphi_i(x)=x_i$ ( $ i=1,\dots,n$), $BDj?t4X?t(B $ \vec x\mapsto c$ $B$+$i!"(B $BOB$H@Q$r:n$k$3$H$K$h$jF@$i$l$k!#(B $B$f$($K7O(B0.5 $B$K$h$j!"(B $BO"B3$G$"$k!#(B (2) $B$bF1MM$G$"$k!#(B $ \qedsymbol$ ARRAY(0xfd7330) $ \qedsymbol$

$BB?9`<04X?t!"M-M}4X?t0J30$NO"B34X?t$NNc$O!"(B1$BJQ?t4X?t$K$D$$$F$O!"(B $B$$$/$D$+CN$C$F$$$k!#(B

(a)
$ \sqrt{x}$ ($ x\ge 0$)
(b)
$ \alpha\in\R\setminus\Z$ $B$KBP$9$k(B $ x^\alpha$ ($ \alpha>0$ $B$N$H$-$O(B $ x\ge 0$, $ \alpha<0$ $B$N$H$-$O(B $ x>0$)
(c)
$ e^x$
(d)
$ \log x$ ($ x>0$)
(e)
$ \cos x$, $ \sin x$
(f)
$ \tan x$ ( $ x\in\R\setminus\{(n+1/2)\pi; n\in\Z\}$)

$B$3$l$i$N4X?t$NO"B3@-$O4{CN$H$9$k!#(B


\begin{jexample}
$B0J2<$N=q$/4X?t$O(B $\R^2$\ $B$GO




next up previous
Next: $B;29MJ88%(B
Masashi Katsurada
$BJ?@.(B23$BG/(B6$B7n(B2$BF|(B