複素関数・同演習 宿題 No. 12 (2025年1月8日出題, 2025年1月14日13:30 までに提出)

__年__ 組____番 氏名______ (解答は裏面も使用可, A4 レポート用紙に書いても可)

問12 (授業の進行具合によっては一部削除するかもしれない。授業中の指示に従うこと。)

- (1) $f(z) = \frac{1}{z^2 z}$ の $c \in \mathbb{C} \setminus \{0,1\}$ における冪級数展開の収束半径を求めよ。実際に冪級数展開せずに答えること。場合わけをして、min を使わずに表すこと。
- (2) 次の関数の零点とその位数を求めよ (値を答えるだけでなく根拠も示す)。
 - (a) $f(z) = \sin(z^3)$ (b) $g(z) = (\sin z)^3$ (c) $h(z) = \cos(z^2) 1$ (ヒント: c が f の k 位の零点ならば、c は f^ℓ の $k\ell$ 位の零点 なぜでしょう?)

問 12 解説

(1) f は $\mathbb{C}\setminus\{0,1\}$ で定義されていて、 $\lim_{z\to 0}f(z)=\lim_{z\to 1}f(z)=\infty$ である (1/14 に説明した言葉を使えば、0,1 は f の極である)。

$$r = \min\{|c|, |c-1|\} = \begin{cases} |c| & (\operatorname{Re} c < 1/2) \\ |c-1| & (\operatorname{Re} c \ge 1/2) \end{cases}$$

とおくと、f は D(c;r) で正則であるから、f の c における冪級数展開は D(c;r) で収束し (ここまでで、収束半径 $\geq r$ と分かる)、

- Re c < 1/2 (r = |c|) のとき $\lim_{\substack{z \to 0 \\ z \in D(c;r)}} f(z) = \infty$
- Re $c \ge 1/2$ (r = |c-1|) のとき $\lim_{\substack{z \to 1 \\ z \in D(c;r)}} f(z) = \infty$

(これで収束半径がr を超えないことが分かるので) ゆえに f の c における冪級数展開の収束半径はr である。

- (2) 以下 $\sin \zeta = 0 \Leftrightarrow (\exists n \in \mathbb{Z}) \zeta = n\pi, \cos \zeta = 1 \Leftrightarrow (\exists n \in \mathbb{Z}) \zeta = 2n\pi$ を認めた上で解答する。
 - (a) $f(c) = 0 \Leftrightarrow \sin(c^3) = 0 \Leftrightarrow (\exists n \in \mathbb{Z}) \ c^3 = n\pi \Leftrightarrow (\exists n \in \mathbb{Z})(\exists k \in \{0,1,2\}) \ c = \sqrt[3]{n\pi}\omega^k$. ただし $\omega := \frac{-1+\sqrt{3}i}{2}$. ゆえに f の零点は $c := \sqrt[3]{n\pi}\omega^k \ (n \in \mathbb{Z}; \ k = 0,1,2)$.

$$f'(z) = 3z^2 \cos\left(z^3\right).$$

 $n \neq 0$ のとき $c = \sqrt[3]{n\pi}\omega^k \neq 0$, $c^3 = n\pi$, $\cos(c^3) = (-1)^n \neq 0$ であるから、 $f'(c) \neq 0$. ゆえに $c = \sqrt[3]{n\pi}\omega^k$ $(n \in \mathbb{Z} \setminus \{0\}, k = 0, 1, 2)$ の位数は 1.

$$f''(z) = 6z\cos(z^3) - 9z^4\sin(z^3), \quad f''(0) = 0.$$

$$f'''(z) = -54z^3 \sin(z^3) + 6\cos(z^3) - 27z^6 \cos(z^3), \quad f'''(0) = 6 \neq 0$$

ゆえに c=0 の位数は 3.

(b) まず $g(z) = 0 \Leftrightarrow \sin z = 0 \Leftrightarrow (\exists n \in \mathbb{Z})z = n\pi$ であるから、g の零点は $n\pi$ $(n \in \mathbb{Z})$. $n \in \mathbb{Z}$ とするとき

$$g(z) = (\sin z)^{3}, \quad g(n\pi) = 0,$$

$$g'(x) = 3\sin^{2} z \cos z, \quad f'(n\pi) = 0,$$

$$g''(z) = 3\left(2\sin z \cos z \cdot \cos z + \sin^{2} z(-\sin z)\right) = 6\cos^{2}(z)\sin z - 3\sin^{3} z, \quad g''(n\pi) = 0,$$

$$g'''(z) = 6\cos^{3} z - 12\cos z\sin^{2} z, \quad g'''(n\pi) = 6(-1)^{3n} \neq 0.$$

ゆえに $n\pi$ は g の 3 位の零点である。

(別解) 後半について: $F(z) := \sin z$ とおくと、任意の整数 n に対して、 $F(n\pi) = 0$, $F'(n\pi) = \cos n\pi = (-1)^n \neq 0$ であるから、 $n\pi$ は F の 1 位の零点である。ゆえに $n\pi$ の近傍で正則な関数 G が存在して、 $F(z) = (z - n\pi)G(z)$, $G(n\pi) \neq 0$. ゆえに $H(z) := G(z)^3$ とおくと、H は $n\pi$ の近傍で正則で、 $f(z) = (z - n\pi)^3 H(z)$, $H(n\pi) = G(n\pi)^3 \neq 0$. ゆえに $n\pi$ は f の 3 位の零点である。

(c) $h(z) = \cos(z^2) - 1$. $h(c) = 0 \Leftrightarrow (\exists n \in \mathbb{Z}) \ c^2 = 2n\pi \Leftrightarrow (\exists n \in \mathbb{Z}) \ c = \pm \sqrt{2n\pi}$ (n < 0) のとき $\sqrt{2n\pi} = i\sqrt{2|n|\pi}$ として)

c がこれら零点のとき $\cos(c^2) = \cos(2n\pi) = 1$, $\sin(c^2) = \sin(2n\pi) = 0$ であることに注意する。

$$\begin{split} h'(z) &= -2z\sin\left(z^2\right), \quad h'(c) = 0 \\ h''(z) &= -4z^2\cos\left(z^2\right) - 2\sin\left(z^2\right), \quad h''(c) = -4c^2 \\ h'''(z) &= -12z\cos\left(z^2\right) + 8z^3\sin\left(z^2\right), \quad h'''(c) = -12c, \\ h^{(4)}(z) &= -12\cos\left(z^2\right) + 16z^4\cos\left(z^2\right) + 48z^2\sin\left(z^2\right), \quad h^{(4)}(c) = -12 + 16c^4 \end{split}$$

c が 0 以外の零点であるとき、 $h(c)=h'(c)=0,\ h''(c)\neq 0$ であるから、位数は 2. c=0 のとき、 $h(0)=h'(0)=h''(0)=h'''(0)=0,\ h^{(4)}(0)=-12\neq 0$ であるから、位数は 4.