信号処理とフーリエ変換第2回

~Fourier 級数の収束~

かつらだ まさし 桂田 祐史

https://m-katsurada.sakura.ne.jp/fourier2022/

2022年9月28日

目次

- 1 本日の内容・連絡事項
- ② Fourier 級数
 - Fourier 級数の収束
 - 実例を見よう
 - 関数列の3つの収束
 - Fourier 級数の収束に関するお勧めの3つの定理
 - Gibbs の現象
- ③ 参考文献

本日の内容・連絡事項

- 今回は、講義ノート [1] の §1.2 の部分 (フーリエ級数の収束) の内容を講義します。 収束というと、ガチガチの数学 (特に解析学) の話題のように感じられるかもしれませんが、実例を見ると自然な問題であることが分かると思います(ぜひ理解してほしい)。
- 実例が大事だけれど、Fourier 解析がらみの計算は手強いので、コンピューターを利用するのが良いと考えています。この科目では Mathematica を利用することにしています (数式処理, 数値計算, グラフィックスが程よく使える)。必要なことはこちらが動画で見せますが、ぜひ自分の Mac でも確かめるようにして下さい。Mathematica が動かなくなっている人は、私(katurada あっと meiji ドット ac どっと jp) または池田先生に相談しましょう。本人確認のため Meiji Mail で連絡を下さい。

桂田 祐史 htt

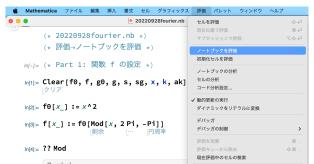
1.2 Fourie 級数の収束 1.2.1 実例を見よう

授業 WWW サイト (https://m-katsurada.sakura.ne.jp/fourier2022/ … Oh-o! Meiji からリンク張ってある) から 20220928fourier.nb を入手して開く。ブラウザーでCtrl+クリックして保存してからクリックするか、ターミナルで以下のコマンドを実行する。

curl -0 https://m-katsurada.sakura.ne.jp/fourier2022/20220928fourier.nb open 20220928fourier.nb

(古い Mathematica で実行しようとすると、警告が表示されるが、多分大丈夫。)

一気に実行するには、Mathematica のメニュー [評価] から [ノートブックを評価] を選ぶ。



Mathematica メモ

- 現象数理学科でライセンスを購入しているので、所属する学生は利用できる。 macOS によっては、Mathematica を更新しないと動かないかも。新しいアクティベーション・キーが必要な場合、桂田か池田先生に相談すること。)。
- アプリケーション・フォルダに Mathematica.app がある (私は Dock に追加しています)。そこからならほぼ確実に起動できる。
- (新しくプログラムを作る場合) Mathematica を起動後、「新規ドキュメント」で ノートブックを開き、コマンドを入力して実行する。
- 忘れないように: コマンドの最後に shift + ┛ とタイプする。
- 直前の結果は % で参照できる。直前のコマンドは command +L で呼び出せる。
- コマンドは編集して再実行できる (挿入、上書き修正、削除、などが可能)。
- ??関数名 としてマニュアルが開ける (非常に便利。これに慣れること。)。
- 関数名の大文字・小文字に注意する。用意されている関数名の先頭は大文字である。
- ノートブックとして保存しておける (ファイル名末尾は .nb)。

1.2.1 実例を見よう 例: $f(x) = x^2 (-\pi \le x < \pi)$

 $f: \mathbb{R} \to \mathbb{C}$ は周期 2π で

$$f(x) = x^2 \quad (-\pi \le x < \pi)$$

とする。グラフを描くことを強く勧める (連続かどうかなど、分かることがある)。

$$f[x_{-}] := f0[Mod[x, 2 Pi, -Pi]]$$

 $g2=Plot[f[x], \{x, -10, 10\}]$

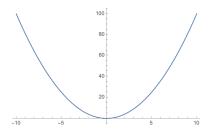


図 1: $f_0(x) := x^2$ のグラフ ([-10,10])

 \leftarrow Mod[] を使って周期 2π の関数を作る工夫

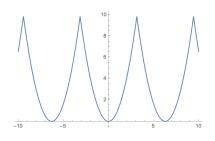


図 2: f のグラフ ([-10,10])

Mathematica の Mod[] について

 $a \in \mathbb{R}, b > 0$ が与えられたとき、

$$a = bn + r \quad (n \in \mathbb{Z}, 0 \le r < b)$$

を満たす n, r が一意的に定まる (a を b で割った商が n, 余りが r … よく知られている)。Mod[a, b] は、この r を返す関数である。

同様に $a \in \mathbb{R}$, b > 0, $c \in \mathbb{R}$ が与えられたとき、

$$a = bn + r \quad (n \in \mathbb{Z}, c \le r < c + b)$$

を満たす n, r が一意的に定まる。この r を返すのが、Mod[a, b, c] である。

r=Mod[a,2Pi,-Pi] とすると、r は $r \in [-\pi,-\pi+2\pi] = [-\pi,\pi)$, a-r は 2π の整数倍、という条件を満たすことを理解しよう。

1.2.1 実例を見よう 例: $f(x) = x^2 (-\pi \le x < \pi)$

f の Fourier 級数をていねいに計算しよう。これは各自がやること (ここに書くのは確認用)。

偶関数であるから $b_n = 0$.

n ≠ 0 のときは

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \ dx = \cdots$$
 (部分積分で計算) $\cdots = \frac{4 \cos n\pi}{n^2} = \frac{4 (-1)^n}{n^2}$.

(計算は結構面倒。19ページに書いておいた。) n=0 のときは

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \ dx = \frac{2}{3} \pi^2.$$

ゆえに

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \cdots\right).$$

(**先取りして** f は周期 2π かつ連続かつ区分的に C^1 級であるから、後で紹介する定理によって、Fourier 級数は一様収束し、和は f(x) に等しい。)

1.2.1 実例を見よう 例 2: $g(x) = 2x (-\pi \le x < \pi)$

 $g: \mathbb{R} \to \mathbb{C}$ は周期 2π で

$$g(x) = 2x \quad (-\pi \le x < \pi).$$

とする。g のグラフは次のようになる。 $x=(2m-1)\pi$ $(m\in\mathbb{Z})$ で g は不連続である。

g の Fourier 級数を計算しよう。g は $((2m-1)\pi$ を除き) 奇関数であるから $a_n=0$.

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin nx \ dx = \frac{1}{\pi} \int_{-\pi}^{\pi} 2x \sin nx \ dx = \frac{4}{\pi} \int_{0}^{\pi} x \sin nx \ dx$$

$$= \frac{4}{\pi} \int_{0}^{\pi} x \left(-\frac{\cos nx}{n} \right)' dx = \frac{4}{\pi} \left\{ \left[x \cdot \frac{-\cos nx}{n} \right]_{0}^{\pi} + \int_{0}^{\pi} 1 \cdot \frac{\cos nx}{n} \ dx \right\}$$

$$= \frac{4}{\pi} \left(\frac{-\pi \cos n\pi}{n} + \left[\frac{\sin nx}{n^{2}} \right]_{0}^{\pi} \right) = \frac{4(-1)^{n-1}}{n}. \quad (試験でミスがとても多い。)$$

1.2.1 実例を見よう 例 2: $g(x) = 2x (-\pi \le x < \pi)$

ゆえに

(1)
$$g(x) \sim \sum_{n=1}^{\infty} b_n \sin nx = 4 \left(\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots \right).$$

ここで ~ は、右辺が左辺の Fourier 級数であることを表す記号である。収束と等号成立が 微妙なので、 = と書かずに (実際成り立たない点がある)、とりあえず ~ としておいた。

g は周期 2π かつ**区分的に C^1 級であるが、連続ではない**。後で紹介する定理によって、(1) の右辺 (g の Fourier 級数) は各点収束し、

- x が g の連続点であれば和は g(x) に等しい
- x が g の不連続点であれば和は $\frac{g(x+0)+g(x-0)}{2}$ に等しい (この例では、 $x=(2m-1)\pi$ $(m\in\mathbb{Z})$ で $\frac{g(x+0)+g(x-0)}{2}=\frac{-2\pi+2\pi}{2}=0\neq g(x)$)

ゆえに、 $x=(2m-1)\pi\;(m\in\mathbb{Z})$ で等式不成立、そうでない点で等式が成立する。

もしも g の $x=(2m-1)\pi$ での値を 0 に修正すると (積分で定義される Fourier 係数と Fourier 級数は変わらないので)、すべての点 x で Fourier 級数の和が g(x) に等しくなる。(分かりにくいかもしれないが理解にチャレンジしよう。)

不連続点の近傍では、Gibbs の現象が見られるが、これについては後述する。

問題点を整理 収束するか、和は元の関数に等しいか

Fourier 級数は、その名の通り級数であるから、第 n 項までの部分和

$$s_n(x) := \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx)$$
$$= \sum_{k=-n}^n c_k e^{ikx}$$

が $n \to \infty$ のときに収束するかどうかがまず問題になる。

特に Fourier 級数の場合、和がもとの関数に等しいことが期待される。

- 成り立つかどうか?-

$$\lim_{n\to\infty} s_n(x) \stackrel{?}{=} f(x)$$

1.2.2 関数列の3つの収束 関数と関数の違いを測る

数列と違って、関数列には複数の収束概念がある。

 $\{s_n\}_{n\in\mathbb{N}}$ が f に収束するとは、 s_n と f の違い (「距離」と言いたくなるが、それは数学語なので、まだここでは使わない) が 0 に近づくということだが、違いの測り方は色々ありうる。

y = f(x), y = g(x) のグラフを描いて、どのように違いを測るか、図で説明してみる。

1.2.2 関数列の3つの収束

関数列の収束を 3 つ紹介する。(関数の定義域は $[-\pi,\pi]$ とする。 $\mathbb R$ とすべきかもしれないが、周期 2π の周期関数なので、同じことである。)

● 各点収束 (単純収束)

(2)
$$(\forall x \in [-\pi, \pi]) \quad \lim_{n \to \infty} s_n(x) = f(x).$$

 $\{s_n\}_{n\in\mathbb{N}}$ は $[-\pi,\pi]$ で f に各点収束する、という。

任意の $x \in [-\pi,\pi]$ を定めると、 $\{s_n(x)\}_{n\in\mathbb{N}}$ は数列である。それが複素数 f(x) に収束する、ということ。

分かりやすいけれど、実はあまり役に立たない。

1.2.2 関数列の3つの収束

● 一様収束

(3)
$$\lim_{n\to\infty} \sup_{x\in[-\pi,\pi]} |s_n(x)-f(x)|=0.$$

「 $\{s_n\}_{n\in\mathbb{N}}$ は $[-\pi,\pi]$ で f に一様収束する。」という。

ある意味で自然。実はこれが成り立つと、色々なことが導かれる。その意味ではとても良い収束である。

(関数論では大活躍する。)

(余談) 連続な関数の場合は、次に説明する L^{∞} ノルムによる収束と一致する。 $(-\pi,\pi)$ において "本質的に有界な" 関数全体からなる関数空間 $L^{\infty}(-\pi,\pi)$ におけるノルム

$$\|g\|_{L^{\infty}} := \underset{x \in (-\pi,\pi)}{\operatorname{ess.sup}} |g(x)|$$

を用いて

$$\lim_{n\to\infty}\|s_n-f\|_{L^\infty}=0$$
 $(L^\infty(-\pi,\pi)$ における s_n と f の距離が 0 に収束) となるとき、 $\{s_n\}_{n\in\mathbb{N}}$ は $L^\infty(-\pi,\pi)$ で f に収束する、という。

1.2.2 関数列の3つの収束

● LP 収束 $(p \times p)$ 次平均収束) ただし $1 \le p < \infty$.

(4)
$$\lim_{n \to \infty} \int_{-\pi}^{\pi} |s_n(x) - f(x)|^p dx = 0$$

が成り立つとき、 $\{s_n\}_{n\in\mathbb{N}}$ は $[-\pi,\pi]$ で f に L^p 収束する、という。

特に p=1 の場合は、積分はグラフの囲む図形の面積を表す。 p=2 の場合は、とてもよく使われる (後で詳しく説明し直す)。

 $L^{p}(-\pi,\pi)$ におけるノルム

$$\|g\|_{L^p} := \left(\int_{-\pi}^{\pi} |g(x)|^p dx\right)^{1/p}$$

を用いると、(4) は次のように表せる。

 $\lim_{n\to\infty}\|s_n-f\|_{L^p}=0$ $(L^p(-\pi,\pi)$ における s_n と f の距離が 0 に収束).

本来は、紹介した3つの収束について、実例を見せたり、それらの間の関係を 説明すべきだが、それは後回しにして、Fourier 級数に関する定理を紹介する。

1.2.3 Fourier 級数の収束に関するお勧めの 3 つの定理

この項目 1.2.3 (定理の紹介) は時間が足りなくなったので、次回の講義に回します。

1.2.3 Fourier 級数の収束に関するお勧めの3つの定理

例1については次の定理がぴったりである。

定理 2.1 (連続かつ区分的に滑らかならば一様収束)

 $f: \mathbb{R} \to \mathbb{C}$ は周期 2π , 連続かつ区分的に C^1 級ならば、f の Fourier 級数は f に一様収束する (ゆえに各点収束かつ任意の p に対して L^p 収束)。

しかし、この定理は、例2には使えない。代わりに次の定理が使える。

定理 2.2 (区分的に滑らかならば各点収束)

 $f:\mathbb{R}\to\mathbb{C}$ は周期 2π かつ区分的に C^1 級ならば、Fourier 級数は各点収束する。実際、任意の $x\in\mathbb{R}$ に対して

$$\lim_{n \to \infty} s_n(x) = \left\{ egin{array}{ll} f(x) & (f が x で連続のとき) \ \dfrac{f(x+0) + f(x-0)}{2} & (f が x で連続でないとき). \end{array}
ight.$$

ここで

$$f(x+0) = \lim_{y \to x+0} f(y)$$
 (右側極限), $f(x-0) = \lim_{y \to x-0} f(y)$ (左側極限).

1.2.3 Fourier 級数の収束に関するお勧めの3つの定理

次の定理も紹介しておく(後で重要になる)。これも例2の関数に適用できる。

定理 2.3 (区分的に滑らかならば L² 収束)

 $f\colon \mathbb{R} \to \mathbb{C}$ は周期 2π かつ区分的に C^1 級ならば、f の Fourier 級数は f に L^2 収束する。すなわち

$$\int_{-\pi}^{\pi} \left| s_n(x) - f(x) \right|^2 dx \to 0 \quad (n \to \infty).$$

実は「区分的に C^1 級」という条件は、f が $(-\pi,\pi)$ で 2 乗可積分 (そのことを $f \in L^2(-\pi,\pi)$ と書く)、すなわち Lebesgue 可測で $\int_{-\pi}^{\pi} |f(x)|^2 dx < +\infty$ を満たす、というより弱い条件で置き換えることが出来る。次のように定理が 1 行で書ける。

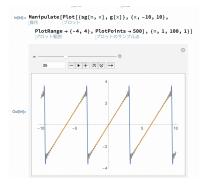
$$f \in L^2(-\pi,\pi) \quad \Rightarrow \quad \lim_{n \to \infty} \|s_n - f\|_{L^2} = 0.$$

1.2.4 Gibbs の現象

f が区分的に C^1 級ではあるが、連続ではない場合、部分和 s_n のグラフは「ジグザグして」、f の不連続点の近くでは「overshoot する」。よく見ると次のことが分かる。

- ullet overshoot する範囲の横幅は、 $n \to \infty$ のときに小さくなる (各点収束するかもしれない)。
- overshoot の大きさ (縦方向のずれ) は、 $n \to \infty$ としても小さく ならない (だから一様収束はしない!)。

この現象は Gibbs の現象と呼ばれている (Wilbraham ([2], Gibbs [3], [4])。



(補足) f の Fourier 級数の計算

n ≠ 0 のとき

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos nx \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x^{2} \left(\frac{\sin nx}{n} \right)' dx = \frac{2}{\pi} \left(\left[x^{2} \frac{\sin nx}{n} \right]_{0}^{\pi} - \int_{0}^{\pi} 2x \cdot \frac{\sin nx}{n} dx \right)$$

$$= \frac{2}{\pi} \left(0 - \frac{2}{n} \int_{0}^{\pi} x \sin nx \, dx \right) = \frac{4}{n\pi} \int_{0}^{\pi} x \left(\frac{\cos nx}{n} \right)' dx$$

$$= \frac{4}{n\pi} \left(\left[x \frac{\cos nx}{n} \right]_{0}^{\pi} - \int_{0}^{\pi} 1 \cdot \frac{\cos nx}{n} \, dx \right) = \frac{4}{n\pi} \left(\pi \frac{\cos n\pi}{n} - \left[\frac{\sin nx}{n^{2}} \right]_{0}^{\pi} \right)$$

$$= \frac{4(-1)^{n}}{n^{2}}.$$

f の Fourier 級数は

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos nx$$
$$= \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots\right).$$

参考文献

今回の内容は、講義ノート [1] の $\S1.2$ そのままです。 Gibbs の報告は有名な Nature なんですね (Letter というやつ)。

- [1] 桂田祐史:「信号処理とフーリエ変換」講義ノート, https://m-katsurada.sakura.ne.jp/fourier/ fourier-lecture-notes.pdf, 以前は「画像処理とフーリエ変換」 というタイトルだったのを変更した。 (2014~).
- [2] Wilbraham, H.: On a certain periodic function, *The Cambridge and Dublin Mathematical Journal*, Vol. 3, pp. 198-201 (1848), Google Books で読むことが出来る。
 https://books.google.co.jp/books?id=JrQ4AAAAMAAJ&pg=PA198&redir_esc=y#v=onepage&q&f=false.
- [3] Gibbs, J. W.: Fourier Series, *Nature*, Vol. 59, p. 200 (1898), https://www.nature.com/articles/059200b0.
- [4] Gibbs, J. W.: Fourier Series, *Nature*, Vol. 59, p. 606 (1899), https://www.nature.com/articles/059606a0.